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Temperature, Pressure, and Radiation  
in Reference Missions 

Chris Moore, “Technology Development for Extreme Environments Systems”  
Workshop on Extreme Environments Technologies for Space Explorations, 
Pasadena, May 14, 2003. 



Kyung A. Son (818)393-2335, kson@jpl.nasa.gov 
 

AlGaN/GaN Hetero Structure-based Micro Sensors  

 

Merits: 
 
•  Superior materials properties;  
  Mechanically strong, chemically & thermally inert, radiation hard 
  Minimal in unwanted optical or thermal generation of charge carriers 
   à Ideal for operations at extreme environments 

 
•  Small volume, low mass, and low power requirement 
 
•  Novel device concept and simple and reproducible fabrication 

•  Monolithic integration of sensors and GaN-based RF transceiver 
  with on-chip amplification; wireless remote sensing (X, Q, and Ka bands) 
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AlGaN/GaN Hetero Structure Devices  
for Pressure Sensing 

•  Sheet charge layer (i.e. 2-
Dimensional Electron Gas) at the 
interface of the GaN and AlGaN 
layers;  

 Sheet charge density ~1x1013 /cm2  
  High electron mobility ~ 1500 cm2/Vs  
 
•  Modulation of the interfacial 
polarization charge by applied 
stress /pressure is the basis of 
pressure sensing.  

GaN 

AlxGa1-xN 

2DEG 

(Figure from N. Prokopuk) 
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AlGaN/GaN based High Pressure Sensors 

Ti/Al/Ti/Au 

         Substrate 

n++GaN 
AlGaN 

n++GaN 

Schematic cross section of  
n-GaN/AlGaN/n-GaN (n-I-n) 
vertical transport diode 
sensor  

Schematic cross section of 
AlGaN/GaN HEMT sensor  

Ti/Al/Ti/Au AlGaN 

GaN 

         Substrate 

Pt,  
W 

2DEG 

Source 
Gate 

Drain 

Iout 

Expected operational range: 
 0-10 kbar with 1 bar accuracy 
 4 K - 870 K 

 
Expected volume: ~ 1 cm3  

   mass: < 5 g  
   power requirement: < 10 mW  
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Conduction Band Diagram of GaN/AlxGa1-xN/GaN Device  

Conduction band diagram of  an n-GaN/Al0.13Ga0.87N/n-GaN  
10 nm thick undoped Al0.13Ga0.87N layer and doping concentration of 2x1017 cm-3 in both n-
GaN regions are assumed. The estimated polarization charge formed at the Al0.13Ga0.87N/n-
GaN is 7.24 x1012 ecm-2 and a barrier height of 1.33 eV is calculated. A decrease of the barrier 
height by 12 meV is expected from 1% reduction of polarization charge, which corresponds to 
60 % increase in thermionic emission current over the barrier. 
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Theoretical Modeling of Pressure Effect on 
GaN/AlxGa1-xN/GaN (n-I-n) Sensor  
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•  Current decreases with  
   increasing pressure.   
•  Decrease of the current is more 
  significant with higher x and the 
  thicker AlGaN layer. 

Normalized change of current densities, (J0-J)/J0, calculated for 
 GaN/AlxGa1-xN/GaN heterojunction under 10kbar hydrostatic pressure 
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n-GaN/Al0.2Ga0.8N/n-GaN Heterojunction Device 

Optical microscope image of  
n-GaN/Al0.20Ga0.80N/n-GaN 
heterojunction device.  
Epi layers are grown with MBE. 

top ohmic contact 

250 µm mesa 

bottom contact 

n+-GaN

Al0.20Ga0.80N

n+- GaN
u - GaN

0.2 mm (3×1018 cm-3)

0.5 mm (7×1017 cm-3)

10 nm (undoped)
30 nm (undoped)

Ti/Al/Ti/Au 
Ohmic

u - GaN

30 nm (undoped)

2.5 mm (2×1018 cm-3)
SiC

200 mm
250 mm

25 mm
Ti/Al/Ti/Au 

Ohmic

n+-GaN
SLs

The AlGaN layer is 10 nm thick , and the 
doping density is 3×1018 cm-3 for the GaN 
layer above AlGaN layer, and  7×1017 cm-3 
for the GaN layer below AlGaN layer.  
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I-V Simulations of n-GaN/Al0.2Ga0.8N/n-GaN Sensor 

Calculated band profiles of  
n-GaN/Al0.2Ga0.8N/n-GaN at three 
applied voltages. The inset shows the 
effect of 10kbar pressure on band 
structures. 
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Calculated current density at zero pressure, and 
the change of current density with 10 kbar 
pressure.  The AlGaN layer is 10 nm thick , and 
the doping density is 3×1018 cm-3 for the GaN 
layer above AlGaN layer, and 7×1017 cm-3 for the 
GaN layer below AlGaN layer. 
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Electrical Responses of n-GaN/Al0.2Ga0.8N/n-GaN 
Sensor to Hydrostatic pressure 

Pressure response measured for the n-GaN/Al0.2Ga0.8N /n-GaN single barrier 
vertical transport device. Current was measured under hydrostatic pressure at a 
fixed forward bias (-0.2 V and +0.5 V).  

•  Linear decrease of the current with increasing pressure 
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High Pressure Test Setup at UMN 

Gas pressure cell 
CuBe cell. He gas compressor 
Maximum pressure: 15 kbar 

Liquid pressure cell 
CuBe cell. Hexane/pentane medium 
Piston compressor 
Maximum pressure: 400 bar 
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Electrical Responses of n-GaN/Al0.15Ga0.85N/n-GaN 
Sensor to Hydrostatic pressure 

Pressure response measured for the n-
GaN/Al0.15Ga0.85N /n-GaN single barrier 
vertical transport device. Current was 
measured under hydrostatic pressure at a 
fixed forward bias (+0.8 V) while the 
pressure was increased (solid dots) and 
decreased (open dots) as well.  

Optical image of  
n-GaN/Al0.15Ga0.85N /n-GaN 
heterojunction device. Epi 
layers are grown with 
MOCVD 

top ohmic contact 

250 µm mesa 

top ohmic contact 

250 µm mesa 

bottom contact 

•  Linear decrease of the current 
  with increasing pressure 
•  Reversible response 
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Theoretical Modeling of Temperature Responses of 
 GaN/AlGaN/GaN (n-I-n) Sensor  

Calculated with 
doping density of 3×1018 cm-3 for 
top GaN layer and 3×1017 cm-3 
for bottom GaN layer.  
10 nm thick undoped AlGaN layer 
is assumed.  
 

Current density vs. voltage plots for GaN/Al0.15Ga0.85N/GaN sensor 
at zero pressure 

Current decreases strongly 
 with decreasing temperature. 
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Theoretical Modeling of Temperature Responses of 
 n-I-n Sensor under High Hydrostatic Pressure 

•  Current decreases with the applied 
  pressure. 
•  The decrease gets more significant 
  at lower temperatures.  

Normalized change of current density under 10kbar for GaN/Al0.15Ga0.85N/GaN 

Calculated with 
doping density of 3×1018 cm-3 for 
top GaN layer and 3×1017 cm-3 
for bottom GaN layer.  
10 nm thick undoped AlGaN layer 
is assumed.  
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Test Setup for Measuring Sensor Responses  
in Wide Temperature Range (JPL) 

Sample stage Gas delivery system 

Viewport for IR camera 

Mass spectrometer 

Temp control system 

Temperature controllable sample stage; 
~100-670K 
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Electronic Architecture for CWA specific RF tagging Summary 

•  Investigated n-GaN/AlxGa1-xN/n-GaN (n-I-n) devices for pressure 
sensors in extreme environments.  

•  Theoretical modeling indicates decrease of electrical currents with 
increasing pressure due to the increase of polarization charge. 
 

•  The modeling predicts more significant decrease of current with 
higher AlN compositions in the AlxGa1-xN layer and for the thicker 
AlxGa1-xN layer.  
 

•  The vertical transport current measured with n-GaN/AlxGa1-xN/n-GaN 
(X=0.15 & 0.2) sensors is consistent with the modeling studies.  
 

•  Linearity and reversibility in pressure response; n-GaN/AlxGa1-xN/n-
GaN is promising for high-pressure sensing in extreme environments.  
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Device structure AlxGa1-xN  thickness: t 

Modifying barrier height with 
AlN mole fraction and thickness                                                           

GaN/AlxGa1-xN/GaN (n-I-n) Sensors Fabricated for 
Characterization of P & T responses 
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2 nm undoped GaN 
18 nm undoped Al0.3Ga0.7N

500 nm undoped GaN

2 mm undoped GaN
Sapphire

AlGaN/GaN HFET for Characterization of P & T responses 
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Pressure Dependence of Al0.3Ga0.7N/GaN HFET Sensor 

Relative change of saturation current with 
pressure  

Relative change of the drain current 
under 1.8kbar pressure  
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Pressure Dependence of Threshold Voltage & Mobility 

Threshold voltage versus pressure 
extracted from -2.5V gate bias data.  
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•  Gauge factors are defined as the relative change of current divided by 
the strain in the basal plane.  

Devices Gauge factors 

Ga- GaN Schottky diodes on sapphire  -980 

freestanding N- GaN Schottky diodes -1560 

Ga- AlGaN Schottky diodes on sapphire  -1672 

AlGaN/GaN HFETs on sapphire  +216 

GaN/AlGaN/GaN devices on SiC  -500 

Summary of experimental results 
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SOA Pressure Sensors for Planetary Applications 

Vaisala BAROCAP sensor  
 

•  Proposed for current New Frontiers missions 
•  Si-based capacitive pressure sensor 
•  operational range: 0.05-1.1 bar  
•  accuracy: ± 1.5x 10-4 bar 
•  operational temperature range: -40 °C to 60 °C 
•  packaged sensor with cooling system: several hundred cm3, 
~2Kg 
•  power ~2 W 

Kulite/Glenn SiC pressure sensor  
 

•  SiC diaphragm/resonator based pressure sensor 
•  operational range: 1-70 bar  
•  operational temperature range: -200 °C to 530 °C 
•  Sensitivity at 25 °C: 20-80 µV/V/psi 
•  Sensitivity at 400 °C -500 °C: 50% of sensitivity at 25 °C 


