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Motivation and approach

• How conservative is the assumption of a Boltzmann distribution
for the excited states of CN and N2 under Huygens entry
conditions?

• The recent NASA Ames shock-tube measurements and modeling
for CN have shown that:

• At p∞=133 Pa, the measured CN(B) population is close to the
Boltzmann distribution, in good agreement with the CR model.

• At p∞=13 Pa (representative of Huygens entry), the measured CN(B)
population  is below the Boltzmann distribution, but the CR model
does not quite predict the radiation decay.

• We have developed a new CR model for CN and N2. We will
compare it with the NASA AMES shock-tube experiments and
apply it to Huygens nominal trajectory.



Nonequilibrium radiation modeling

no
ne

qu
ili

br
iu

m
1. Boltzmann in thermo-chemical nonequilibrium (ESA,

NASA, EM2C)

• T=Tr, Te=Tv=Tele.

2. Electronic CR model (NASA, EADS, EM2C)

• T=Tr, Te=Tv,

• Kinetics of electronic states.

3. Vibrational-electronic CR model for air plasmas
[Capitelli et al.] or [Pierrot, Chauveau, Laux],

• T=Tr, Te,

• Kinetics of electronic and vibrational states.
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• Spontaneous emission

• Collisional  (de)excitation with N2

• Pooling

• Quenching

• Resonant collisional
(de)excitation with N2

Present CR model (20 reactions)

CN(B) → CN(X) +hν

CN(X) + N2(X)_ CN(B) + N2(X)

CN(X) + N2(X,v=11)_ CN(B) + N2(X,v=0)

CN(X) + e- _ CN(B) + e-

N2(A) + N2(A)_ N2(B) + N2(X)

N2(A) + CN(X)_ N2(X) + CN(B)

• Electron impact (de)excitation



1. Flowfield

• 1D solver for 2-temperature Euler equations .

• Thermal nonequilibrium chemistry model (Gökçen).

2. Collisional-radiative model

• CN(A,B), N2(A,B,C) excited electronic states.

• Lagrangian approach (more general than QSS).

 Case 1, NASA-AMES, p = 13.3 Pa, us = 5150 m/s, 98%
N2, 2% CH4.

 Case 2, NASA-AMES, p = 133.3 Pa, us = 5930 m/s, 91.4%
N2, 8.6% CH4.

Shock-tube experiment



Shock-tube (temperatures)



Shock-tube (composition)

___NASA AMES,

— our results



Shock-tube [CN(A,B) populations]

— Boltzmann, --- Lagrangian method, +++QSS approximation



Shock-tube [N2(A,B,C)]

— Boltzmann, --- Lagrangian method, +++QSS approximation



Huygens entry

• Yelle nominal trajectory, 95%N2, 3%CH4, 2%Ar, -65° path flight
angle, no gravity wave.

• Flowfield: LORE code [L. Walpot]

→ t = 165 s, neutral mixture

→ t = 187 s, ionized mixture

• CR model: we gradually incorporate the various reactions to
assess their relative influence on the nonequilibrium populations.



Huygens entry [CN(A,B)]

— Boltzmann, … radiation&molecular impact,---&resonant, ___&electron impact

t = 165 s t = 187 s



Huygens entry [N2(A,B,C)]

— Boltzmann, … radiation&molecular impact,___&electron impact, ___ & pooling,
___ & quenching: N2(A)+CN(X)_N2(X)+CN(B)



Conclusion
• An electronically specific CR model was proposed to quantify
nonequilibrium radiation of CN(A,B) and N2(A,B,C) excited states during
Huygens entry on Titan.

• The CR model was solved accurately in time by means of a Lagrangian
method.

⇒ The model was applied to the NASA AMES shock-tube experiment.
Results agree with those of Bose et al, despite the different approaches.

⇒ The model was applied to Huygens entry simulations obtained by
Walpot.

• The CN(B) population is close to Boltzmann at t = 187 s and about
a factor two lower at t = 165 s.

• The N2(A,B,C) population is close to Boltzmann for both trajectory
points.



Future work
• Improve CR model to better predict rate of radiation decay in
shock-tube experiments.

• Implement extension to an electronic and vibrational state-specific
CR model because reaction rates depend on the vibrational
population distribution (resonant molecular impact, inverse
predissociation).

• There is a need for additional experimental validation.
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