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Air-breathing propulsion is one of the important research fields of the hypersonic flow today. The
objective of the present study is to develop a CFD tool to analyze the flow through Scramjets. The
configuration considered is a Scramjet with single cavity recessed in the combustion chamber.
Cavities are designed to enhance the mixing by means of creating a recirculation region which
cause an increase in the residence time and so mixing efficiency. For this CFD tool, Euler
equations and finite rate chemistry equations are used. Hydrogen-Air and Ethylene-Air combustion
mechanism are considered for Scramjet combustor. For the solution of the coupled Euler and
chemical reaction equations Newton-GMRES method is applied. Newton-GMRES is one of the
Newton-Krylov solution methods which is a kind of Inexact Newton method.
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Abstract

Results

Introduction
From mid-50’s, Scramjets became main area of interest of the air-breathing propulsion systems.
Since for hypersonic flow regions decelerating the flow to subsonic speeds causes significant
pressure loss and temperature rise ramjets became non-profitable.[1] In Scramjets, air enters the
combustion chamber at supersonic speeds and combustion occurs in supersonic flow region. One
of the biggest challenges of the scramjet propulsion system is the design of the combustor since
the flow must be maintained at supersonic level. Flow compressibility and reduced residence time
in the combustor because of the supersonic conditions will cause poor mixing rate of the fuel-air
and flame holding will be difficult. In order to overcome the low mixing efficiency cavity is used
on the combustion chamber wall. The principle of the use of cavity is that by creating a circulation
region in the combustor and so increasing the residence time it improves the mixing efficiency and
flame holding.[2] For this study, combustion chamber of the experimental scramjet in research cell
18 at Wright-Patterson Air Force Base is taken as reference. [7]
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Spatial discretization of the flux vectors are done using upwind flux vector splitting schemes.
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The finite rate chemistry model can be expressed as follows for 𝐾𝐾 number of species and 𝐼𝐼
number of the reactions:
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In order to solve the coupled Euler equations and finite rate chemistry equations Newton-GMRES
is used which is an alternative method with matrix free solution technique. In Newton-GMRES
method by using the restriction given, Newton’s methods leads to inexact Newton method.
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Liquid Hydrocarbon fuels are more efficient in low hypersonic Mach numbers while Hydrogen is
more efficient in high Mach numbers.

Conclusion can be summarized as follows:
• A bow shock has been generated over the fuel injectors where velocity of the main flow

decreases and density increased abruptly. Moreover, because of the recirculation region created
in the cavity flow slows down further and so Mach number decreases. But, downstream of the
cavity, velocity of the flow increased as a consequence of the divergent geometry of the
combustion chamber.

• mixing occurs immediately after the injection of the fuel inside the cavity. The combustion
process and decreasing flow velocity cause temperature to experience a peak, downstream of
the fuel injectors in the cavity region.

• Mass fraction of the products increased after the fuel injection where combustion has occurred
which is expected.

Figure 1. Schematic Scramjet Figure 2. Combustor grid distribution

In Newton-GMRES method by using the restriction given in Eq. (25) Newton’s methods leads to
inexact Newton method.

Table 1. Hydrogen-Air Reaction Rates Table 2. Ethylene-Air Reaction Rates

Figure 3. Combustor Mach number variation

Figure 4. Combustor temperature distribution

Figure 5. Combustor density distribution

Figure 6. Hydroxide mass fraction

Figure 7. Vapor water mass fraction
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Figure 8. Combustor Mach number variation

Figure 9. Combustor temperature distribution

Figure 10. Hydroxide mass fraction

Figure 11. Hydroxide mass fraction

Figure 12. Vapor water mass fraction
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