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LVS prototype tested over Mars-analog ""

terrains in Feb/March 2014

Test collected data to validate
technology over a wide operational
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LVS Prototype Field Test Video Sl
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Fine Match Field Test Performance
inside operational envelope w/ Bias Fixes
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TRN Flight Implementation
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Assess Landing Site Impacts
Landing Site Workshop Il
August 4th-gth 2015

LVS Preliminary Flight Design
TRN PDR
November 10™-11t, 2015

Mars 2020 Baseline Decision
TBD
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The Future of Landing: Terrain Relative Navigation From Prototype to Mars 2020
Aaron Stehura!, Paul Brugarolas?, Jordi Casolival, Allen Chen?, Andrew Johnson?, Swati Mohan?
1Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109

Abstract:

The Terrain Relative Guidance Target Selection (TRGTS) system is an enabling Entry, Descent, and Landing (EDL) technology
proposed for inclusion in the Mars 2020 mission [1]. TRGTS provides real-time, terrain-relative position determination and generates a
landing target based on a priori knowledge of hazards. TRGTS is composed of the Lander Vision System (LVS) and the Safe Target
Selection (STS) algorithm. The LVS generates a map-relative localization solution by fusing measurements from a visible-wavelength
camera and an inertial measurement unit using the Terrain Relative Navigation algorithm operating on a high-performance compute
element. Updated state knowledge is provided to the spacecraft navigation filter, which uses the STS algorithm to direct a divert
maneuver away from known hazards within an onboard map.

A prototype LVS was developed and demonstrated over relevant terrain using both a helicopter and a rocket-powered vertical
takeoff and landing vehicle. This proof-of-concept and other analytical and simulation-based studies have paved the way for potentially
including TRGTS as an essential EDL technology for Mars 2020. This paper discusses results from these studies and how they fed into
requirements tailored for this mission. Finally, analyses are summarized that show how TRGTS enables access to new, scientifically
compelling sites and allows landing ellipse placement for easier access to regions of interest at sites considered by previous missions.

Reference:
[1] Allen Chen. et al. (2014) Mars 2020 Entry, Descent, and Landing System Overview, IPPW11 Presentation #8015.
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TRN Operations Concept
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LVS Closed Loop Powered o
Flight Tests. December 2014
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 TRN= Terrain Relative Navigation

TR N Term I n0|09y — all the new development to avoid hazards

in the landing ellipse

« STS = Safe Target Selection

TRN — picks the safe landing site between a-priori
hazards based on the position provided by LVS

: I : — Used to be multi-point or multi-X. Runs on the RCE
* LVS = Lander Vision System
STS LVS — the hardware that performs Map Relative Localization
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 VCE = Vision Compute Element
= RAD/750 — the LVS processor (formerly VCE)
e LCAM =LVS Camera

MRL = Map Relative Localization

= CVAC — the algorithms & code that compute position relative
to a map (used to be called TRN!)

« VCEFSW = VCE Flight Software
CEPCU1 — flight software that runs on the Rad750 VCE

 CVAC = Computer Vision Accelerator Card
— new Virtex5 co-processor card in the VCE
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Lander Vision System Flight Configuration
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