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OutlineOutline

• Why this tutorial?
• Ablative TPS - early studies
•• Organic resin compositesOrganic resin composites
• Surface recession mechanisms/modeling
• High fidelity model development
• Testing approaches/requirements
• Future needs
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Empirical ApproachEmpirical Approach

• Potentially, very accurate (if data is well-behaved), but 
what parameter(s) does one correlate recession rate 
with?
– Surface temperature
– Pressure
– Heat transfer-coefficient

• Empirical correlations do not provide any insight to 
ablation mechanisms

• Validity of correlations typically limited to range of ground 
test data
– Extrapolation beyond data range carries significant risk
– Capability to simultaneously simulate flight environment 

parameters (e.g., heat flux, pressure, enthalpy) in ground test is 
the exception rather than the rule
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Empirical correlationsEmpirical correlations
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Ablation MechanismsAblation Mechanisms
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MeltingMelting

• Melting is a common 
ablation mechanism, but 
doesn’t absorb much 
energy

• Rapid melt runoff due to 
aerodynamic shear 
results in significant 
(inefficient) ablation

• In contrast, a stable liquid 
layer on the surface can 
be attractive (due to the 
potential for vaporization)
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VaporizationVaporization

• Vaporization absorbs 
significant amount of 
energy

• Example:

• However, typically, liquid 
layers have low-moderate 
hemispherical emissivity
(reduces re-radiation)
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Oxidation Oxidation -- 11

• Oxidation is an exothermic 
process

• Example:

• Note: the B’ curve for carbon in 
air was generated with 
assumptions of thermochemical 
equilibrium, equal diffusion 
coefficients, etc.

• The “equilibrium” assumption 
allows the diffusion-limited 
plateau to extend to 
unrealistically low surface 
temperatures
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Oxidation Oxidation -- 22

• The diffusion-limited value of B’ can be calculated from the mass 
ratios of the reactants and products, i.e.,

where there are 3.718 moles of N2 for each mole of O2 in air. The 
approximate value of B’ for this reaction can  be defined as the ratio 
of the mass of the solid reactants to the mass of the gaseous 
reactants, i.e.,

• Realistic estimates of carbon ablation at low surface temperatures 
requires consideration of reaction-rate limited oxidation processes
– Complex problem where rates are dependent upon oxygen partial 

pressure, mass transfer coefficient, temperature, surface morphology, 
etc.

2C s( )+ O2 g( )+ 3.718N2 g( )↔ 2CO g( )+ 3.718N2 g( )

′ B = mass of carbon
mass of air

=
2 12.011( )

32.0 + 3.718( )28.014[ ]
= 0.176
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Oxidation Oxidation -- 33

• Comparison of equilibrium 
solution vs. rate-limited 
solutions for carbon oxidation 
demonstrates that equilibrium 
solutions will overestimate 
surface recession over much 
of the oxidation regime

• Developing kinetic rate 
constants requires careful 
experimentation

• Results will be material-
specific since absorption/ 
desorption is dependent on 
surface morphology
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SublimationSublimation

• Carbon sublimation is a highly 
endothermic process

• Example (for simplicity):

• Carbon sublimation predictions 
exhibit some sensitivity to 
species thermochemical data 
(e.g., JANAF, Livermore, etc.) 0.1
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C s( )→ aC1 g( )+ bC2 g( )+ cC3 g( )
+ ... nCn g( )

3C s( )→ C3 g( )

∆Hsub ≈ 22.7 kJ /gcarbon
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SpallationSpallation

• Spallation refers to thermo-
structural failure of the material 
and ejection of solid char and 
particulates10,11,17,18,22

– More common in organic 
resin composites than 
homogeneous materials

• All organic resin composites 
have a spallation threshold 
= 

• Spallation threshold, in 
general, increases with 
increasing density

( )pqf ,&
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Organic Resin CompositesOrganic Resin Composites

• Generating surface 
thermochemistry tables for 
organic resin composites 
requires thought and care

• Useful to plot the solutions to 
ensure that the thermal response 
code is capable of interpolating 
between adjacent solutions with 
credible results

• Thermochemical equilibrium 
solutions are reasonably 
complex; incorporating rate-
limited reactions is very complex
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SummarySummary

• Modeling surface ablation is best accomplished if the focus is on 
understanding ablation mechanisms
– Requires careful experimentation

Film or video
Surface temperature (key discriminator)
Post-test inspection/autopsy 

Use theoretical models (e.g., thermochemical equilibrium) for 
pre-test/post-test predictions

Compare data with predictions (mass loss rate, surface temperature, 
surface species, etc.)
Identify other parameters that could influence performance (e.g., 
surface catalycity) 

Ability to model material performance mechanisms using 
thermochemical models allows extrapolation to conditions beyond 
ground test data base (within limits)
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