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Motives

• Mission critical phase: post-flight analysis

• Reconstruct trajectory & atmosphere

Mars entry flight data

• IMU: translational and angular velocity rates

• FADS: heat shield surface pressures

Some post-flight reconstruction results

• 2008 Phoenix: trim angle anomaly
[Desai et al., 2011]

• 2008 Phoenix: large scale atmosphere 
oscillations consistent with thermal tides 
[Withers et al., 2010]

• 1997 Pathfinder atmosphere reconstruction 
suggested CO2 clouds
[Schofield et al., 1997 – Clancy et al., 1998]

EDL post-flight reconstruction

IPPW-11 Pasadena, US19 June 2014

Inertial Measurement
Unit (IMU)

Flush Air Data 
System (FADS)

Flush Air Data System (FADS) on 2016 
ExoMars EDM engineering model

adapted from [Y. Mignot et al., 2013]

flight data recorded during entry
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IMU-based reconstruction  – conventional methodology
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Atmosphere reconstruction

1. Derive density from acceleration and drag

Aerodynamic drag coefficient 𝐶𝐶𝐷𝐷
2. Derive pressure: integrate density over altitude

(hydrostatic equilibrium from initial pressure)

3. Derive temperature: divide pressure by density
(ideal gas law)

𝜌𝜌 = 2
𝑚𝑚 · �⃗�𝑎

𝐶𝐶𝐷𝐷 · 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 · 𝑉𝑉2

accelerations

rotations

simulated ExoMars Mach-altitude profile

IMU flight data

Trajectory reconstruction

• Initial trajectory state

• Numerical integration of IMU
acceleration and rotation rate signals

(equations of motion)

simulated ExoMars inertial
acceleration data
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Uncertainty Quantification (UQ) methods
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Monte Carlo (stochastic sampling)

• N samples from input probability density functions (PDF)

• N deterministic reconstructions

• For large >> N the output PDF can be well approximated

• Advantages:  simple, robust, flexible

N  x 
reconstruction

input PDF

output PDF

Bayesian state estimation (stochastic solver)

• Replaces deterministic reconstruction methodology

• Commonly a Kalman filter assuming white Gaussian noise

• Blends predictions (models) and observations (measurements)

• Provides reconstruction with uncertainty bounds

• Advantages: can be fast (real-time)
can combine multiple measurements 𝑃𝑃 𝑥𝑥|𝑧𝑧𝑘𝑘 ~ 𝑃𝑃 𝑧𝑧𝑘𝑘|𝑥𝑥 � 𝑃𝑃 𝑥𝑥|𝑧𝑧𝑘𝑘−1

state 
estimate

observation prediction

𝑥𝑥 state
𝑧𝑧 measurement

Bayes’ rule
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Phoenix IMU flight data

• Available on PDS

• High sampling rate (200 Hz)

IMU flight data  – noise & smoothing
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• What is the noise that was smoothed out like?

• Uncertainty associated with smoothed signal?

• Data noise description required in any UQ approach

what is the impact of noise characteristics and smoothing on UQ?
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Phoenix IMU data noise characteristics

• Subtract smoothed signal from noisy data

• Construct detailed noise description

• Gaussian noise? Frequency content? Cross-correlations?

• The above stationary or function of time? (yes, nearly)

• Store complete description for noise generators to use

IMU flight data  – noise & smoothing
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not exactly white: auto-correlated data noise

Gaussian data noise variance

cross-correlations between data noise

how important are these characteristics ?
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UQ: Monte Carlo reconstruction
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noisy datasmoothed data N  x  generate
raw data noise

N  x 
deterministic

reconstruction

Apply noise after smoothing

AA

AB
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Apply noise before smoothing

RECONSTRUCTION INPUT

smoothed data

N  x  smooth
noisy data

N x  generate
post-smoothing

noise

RECONSTRUCTION INPUT

Two ways to implement data noise



UQ: Monte Carlo reconstruction
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AA Generate noise before smoothing

Based on IMU noise analysis but
assuming white noise:

• smoother less effective
• more post-smoothing noise

Generating colored data noise:
• smoother as effective as for real data
• less post-smoothing noise

AB Generate noise after smoothing

Assumed white post-smoothing noise
Used the post-smoothing noise variance
estimated by        with colored noise

Monte Carlo  IMU noise (3-σ)
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UQ: Monte Carlo reconstruction
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Monte Carlo reconstruction results for Phoenix

• Neglecting noise frequency content may overestimate reconstruction uncertainty
• In particular trajectory uncertainty bounds (mainly dependent on IMU noise)
• However negligible impact on atmosphere reconstruction (mainly 𝐶𝐶𝐷𝐷 uncertainty)
• Neglecting cross-correlations had negligible impact (results not shown)
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So far
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Conclusions from Monte Carlo

• Carefully evaluate flight data noise regarding frequency content,
cross-correlation and consequences for and of smoothing

• Phoenix IMU data is colored, cross-correlated and Gaussian

• PDS trajectory uncertainty was overestimated consistent with white noise 
assumptions

Consequences for state estimator design

• Kalman filters commonly assume white Gaussian noise (augmentations do exist)

• But operates differently from conventional deterministic reconstruction:

what is the impact of assuming white noise?

9



Unscented Kalman Filter (UKF)
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Preliminary Kalman results

• Input unsmoothed IMU data
• IMU white noise description

Trajectory reconstruction
Similarities with white noise Monte Carlo overestimate

Atmosphere reconstruction
Insignificant impact of noise frequency content
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Further questions for state estimation
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Blending predictions and observations:

Predictive model uncertainty is often tuned to

• bias the filter to observational data or predictive models

• avoid numerical instabilities in the algorithm

But we prefer uncertainties to be based on physical or model validation arguments

How to compare EDL reconstruction with ground simulations when that reconstruction is 
influenced by expected results?

The detailed construction of prediction and measurement models
affects uncertainty propagation:

which are most appropriate for science and engineering UQ purposes?
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Conclusions
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original question:

what is the impact of noise characteristics and smoothing on reconstruction UQ?

we showed that

• IMU data noise recorded by 2008 Phoenix is colored, cross-correlated and Gaussian

• Monte Carlo approaches require the signal frequency content to be taken into account

• white noise assumptions can work but must be justified and used carefully

• incorrect white noise assumptions overestimated trajectory uncertainties

preliminary results suggest that

• these conclusions also apply to Bayesian state estimators used for UQ

• Kalman solvers could benefit from colored noise models

• Different implementations produce different uncertainty estimates
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State estimation approach
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Blending prediction and observation

for every time step:

unfiltered IMU data

previous state estimate

predictive
model

measurement 
model

PREDICTIONS

of state

of measurements

PREDICTIONS

UNCERTAINTY ON

IMU flight data

process & 
measurement models

Kalman
Filter

FINAL ESTIMATE

state estimate
with σ-bounds

Process noise is often tuned to 
produce ‘good’ state estimates 
with low uncertainties

This is often white Gaussian noise
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