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Atmospheric Entry Problem

What is missing?
• Accurate Flight-to-Ground Extrapolation Methodology for simulating spacecraft on Earth
• Real Flight Data for validation of Ground Tests and Numerical Simulations

What is proposed?
• Part 1: Ground test methodology
• Part 2: QARMAN, the re-entry experiment vehicle fully developed and launched by VKI&ULg

A must for safety and efficiency of future 
manned/unmanned space missions

When approaching a planet with atmosphere..
→ Extreme aerodynamic heating
→ High Gas-Surface Interaction
→ Real gas effects and lots of chemical reactions
→ Thermal Protection Systems
→ Different stability regimes
→ Telecommunications blackout
→ Different and complicated attitude control requirements
→ …

Sakraker, Atmospheric Entry Aerothermodynamics Flight Test On CubeSat Platform 

2



QARMAN: A Real Flight Experiment
QubeSat for Aerothermodynamic Research and Measurements

on AblatioN

Why a Re-Entry “CubeSat”? 
- Affordable Flight Data
- Standard subsystems and launch adaptors
- ”Science” missions with its current high technology
- Opportunity of ‘Technology Demonstration’
- Key role in future interplanetary mission thanks to low mass and small size
Mission:
- First VKI mission to be launched in early 2016 to 380 km polar orbit
- Triple Unit CubeSat: 34x10x10cm, 3kg
- Objectives: Atmospheric Entry to Earth for Flight-to-Ground Extrapolation Methods Validation
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Stagnation Point Heating by Fay&Riddell, 1958

Local Heat Transfer Simulation 
Thermo-chemical equilibrium
at stagnation point:

→ Subsonic plasma
Full simulation of stagnation region

Part 1: Flight-to-Ground Extrapolation
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Current Status: Effort put only in p and H
To be investigated: β
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Velocity Gradient β
1. Unique value for each geometry and each

point on the trajectory
2. No expression exists in literature for blunt and

non-axisymmetric vehicles
3. Existing expressions are in terms of velocity

gradient and a spherical radius and defined
either at the wall or along the stagnation line

Part 1: Flight-to-Ground Extrapolation

Lunev, 1975

For QARMAN-like non conventional vehicles:
Problem: One equation - Two unknowns; Reff,H and β

→ Proposed Solution:  A 4-step Iterative Method
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Part 1: Flight-to-Ground Extrapolation
Iterative Approach

Step 1

Step 2

Step 3

Step 4
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Part 1: Flight-to-Ground Extrapolation
Results for QARMAN@66km
 Very good agreement in temperature and density
 Same good agreement in Species as well

Results shown for 66 km altitude

10x10 cm R12.8 cm R11.3 mm
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Part 2: QARMAN In-Flight Experiments
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Part 2: QARMAN: In-Flight Experiments

Overview

Payload Objective Sensor

XPL01 TPS Efficiency Temperature

XPL02 TPS & Environment Pressure

XPL03 Stability, FADS Pressure

XPL04 Laminar to Turbulent 
Transition, FADS

Pressure

XPL05 Off-Stagnation 
Temperature, FADS

Temperature

XPL06 Aerothermodynamic 
Environment and 
Radiation

Spectrometer

*Spectrometer payload was presented on Tuesday AM by Gilles Bailet

Sakraker, Atmospheric Entry Aerothermodynamics Flight Test On CubeSat Platform 

9



I. Stating the Problem and Defining the Payload Objectives
II. Subject Trades: Measurement Parameters/Magnitudes
III. Preliminary Investigation: CFD, Experiments and Determining the 

‘Performance Thresholds’.
IV. Measurement Techniques: Mass, Volume, Power Consumption, 

Accuracy, Data Size, TRL, Cost and Feasibility in a CubeSat platform
V. Preliminary Configuration and Operations Concept
VI. Ground Testing Methodology and Extrapolation to Flight
VII. Risk Analysis
VIII. Success Criteria: Considering the previously defined ‘performance 

thresholds’
IX. Document and Iterate Measurement 

Chain Design
Payload Head 

Design

Part 2: In-Flight Experiments Design
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Selection Criteria
• Scientific Contribution
• Redundancy 
• Weight 
• Mission Risk 
• Dependency 
• Integration Simplicity 
• DAQ Simplicity 

PL Design: TPS Scenarios XPL01 & XPL02

Selection: Scenario 4

P1’

P1

P2

T1’

T1T2

1- Thermal plug center locations:
z1=22mm and z2=46mm

2- Pressure port center locations:
z1=15mm and z2=40mm

3-Spectrometer optical path at z=0
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XPL01 & XPL02 Configuration
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60°

14mm

50mm

• 5 Thermocouples at 2.5, 5, 11, 18, 25 mm
• At 60° apart
• 2 thermocouple per side trail
• TC Type K in U-shape

XPL01: Thermal Plugs
Payload Objectives:
• Ground Test Methodology Validation
• Characterize&Qualify TPS material
• Rebuild the free stream flow condition (FADS)
• CFD Validation
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Breadboard Tests
 TRL 3 to TRL 4

Type K Circuitry including
- CJC
- RFI Filter
- ADC

XPL01 Measurement Chain Design & Qualification

VKI Engineering Model
Tested extensively at VKI

Flight Model of the satellite

Launch: 19 June 2014
Payload: 6 Type K TCs – Fiber Glass Insulated + Teflon Insulated

Hopefully TRL 9 for the circuitry after 19 June 2014
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Breadboard Tests
 TRL 3 to TRL 4

Optimized for Absolute Pressure Sensor
Tested at VKI Minitorch Facility

XPL02: TPS Pressure

Bare Pressure Port-No tubing
Hole in TPS: 2mm
Spool diameter: 3 mm inner

6 mm outer
Pipe: Stainless Steel

Pressure Spool Design
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Engineering Model at VKI Plasmatron – 25 March 2014
Objective: Make autonomous measurements inside Plasmatron chamber
 TRL 4 to TRL 7

Scale 6/10 Model

XPL01 & XPL02: Testing

Cork P50

1 Microprocessor including memory
2 Absolute Pressure Sensors
4 Thermocouples Type K  2 thermal plugs

Thermal Plug with 3 TCs at 8, 15, 22mm

Pressure Hole
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Engineering Model at Plasmatron – 25 March 2014

XPL01 & XPL02: Testing

Before Test During Test After Test
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XPL03-04-05 Configuration
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Pressure and Temperature Measurements

Main Objectives:
XPL03: Stability
XPL04: Transition
XPL05: Temp.

Common Objectives:
1- FADS for trajectory rebuilding
2- CFD Validation
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Breadboard Tests
 TRL 3 to TRL 4

Measurement Chain Optimized for Differential
Pressure Sensor

with 34 Pa sensitivity

XPL03: Stability and FADS

Tests at VKI Minitorch Facility

Payload Objectives:
• Rebuild the stability attitude of the spacecraft 
during re-entry by pressure measurements
• Rebuild the free stream flow condition (FADS)
• Ground Test Methodology Validation
• CFD Validation
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XPL04: Laminar to Turbulence Transition

Payload Objectives:
• Determine laminar to turbulent boundary 
layer transition location (if any, since 
Reynolds ~300-600)
• Provide input for FADS with additional 
pressure station
• CFD Validation

Specifications:
• Combination of absolute and differential
pressure sensors along the middle line + 
temperature sensors (XPL05)
• y = 15; 20; 25 mm 
• Pressure spool attached to the side panel 
ceramic structure
• Measurement chain identical to XPL02 
and XPL03
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XPL05: Off-Stagnation Temperature
Payload Objectives:
• Monitor the temperature evolution
• Monitor the density evolution (combined 
with XPL03)
• Contribute to FADS
• Plasmatron Off-Stagnation Methodology 
Validation for TPS Characterization
• CFD Validation

Specifications:
• 8 Type K thermocouples
• Faces +X –X
• y=15; 20; 25 mm 
• Data Acquisition System identical to 
XPL01
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Thank you

Questions?
isil.sakraker@vki.ac.be

Von Karman Institute for Fluid Dynamics
Rhode-St-Genese, Belgium
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Cork P50
Stag. Point: +1mm
Corner: -7.4 mm

Part 2: QARMAN – TPS Selection

Back temperatures for insulationSelection

-It is decided by VKI to continue design and manufacturing with 
both P50 and TPS3L

-Ablator producersAstrium/Amorim agrees to provide material free of 
charge

- Insulation in the back; mass loss and recession/swelling  of P50 and 
TPS3L are comparable.

-TPS3L is lighter than P50
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Part 1: Flight-to-Ground Extrapolation
Iterative Approach - Step 1

VKI Stagnation Line Code
for the sphere of Reff,H at 66km

CFD Along Trajectory

Stagnation Line Profile

Inviscid Comp.: β at the wall

Temperature profile stops 
being linear: β @ δ
MNT is used to find Reff,H

Are shown to be equivalent
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Part 1: Flight-to-Ground Extrapolation
Iterative Approach - Step 2

Fay-Riddel equation

Hypersonic Regime Subsonic Regime
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- Subsonic Sphere
- Classical BL Model
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Part 1: Flight-to-Ground Extrapolation
Iterative Approach – Step 3

Plasmatron simulation by ICP
 Conversion needed from Classical BL to Finite Thickness BL

 Momentum equation gives:
Rm is the radius of the 
hemispherical probe to be used.
Step 4: Iteration on ICP & geometry

Check: Rm vs Rm,initial

Example of ICP Computation for two different probes: Temperature
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Part 1: Flight-to-Ground Extrapolation
Tools for each step and summary
Step 1:  Hypersonic CFD++ computation: viscous and inviscid

 Grid convergence study
 VKI SL code for vehicle-hypersonic sphere comparison

Step 2:  Experimental Plasmatron Campaign to determine
1. Correct free stream conditions: enthalpy and pressure
2. Dynamic Pressure at the correct conditions

Step 3:  Run VKI ICP Code
1. With an initial radius of hemispherical probe Rm,initial

2. For the entire test matrix
 Compute NDPs
 Compute Rm

Step 4: Iteration:  Repeat Step 3 with the Rm found until it matches the ICP Rm where
the NDPs are found
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