A Stochastic Model for the Landing Dispersion of Hazard
Detection and Avoidance Capable Flight Systems

Lars Witte

11t International Planetary Probes Workshop, Pasadena / CA, 2014

11""}"

g "i"ge for T@morrow

%R




Overview

Motivation and Problem Statement
Model Key Elements

Application Example

Conclusions




Motivation / Problem Statement

* Landing site assessment as part of the
mission engineering requires analysis of
the risk of terrain related failures,

» State-of-art uses superposition of the
landing ellipse on terrain maps to make
probability estimates of an encounter with
certain terrain features,

* In case of flight systems equipped with
Hazard Detection & Avoidance (HDA)
functionality the terrain features ,drive*
the dispersion pattern.

» The current technique shall be
supplemented by a suitable model which
captures the key-functionalities of an
HDA-subsystem.
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Motivation / Problem Statement

Position Dispersion
at High Gate

Max. Divert Range

Sensor FOV (half cone

Grid decomposition of landing area with ,per
grid-cell* initial likelihood P, (p, in a vector
notation) to land in that area.

Need to propagate initial dispersion pattern to
post HDA maneuver pattern.

Idea: use (Semi-) Marcov chains

P1=T-Pg

Need to find a transition matrix T,
which captures the flight system
technical properties!




Math. Model: What must be modeled (at least)...

» Macroscopic dispersion pattern determined by the site selection of onboard entity,

« HDA subsystem key functionalities considered:

» Terrain Mapping (sensor FOV, sensor errors),
» Trajectory Generation (considering Tgo, propulsion constraints)
» Hazard Assessment & Decision-Making (Cost or Score Function, error propagation into
the divert-decision)
 Inner loops of the control cascade not considered, thus the ,fine dispersion” around

the commanded trajectory is neglected.
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Math. Model: Field of View and Divert Capability

» The landing zone is represented by gridded data products such as a DTM, providing
maps of the size n x n,

« Visibility and accessibility of a particular position on the map from a given position is
modeled using a graph,

» The graph connects all nodes within field of view or divert range.
* An n2 x n2 adjacency matrices store the visibility and divert range capabilities.
» The adjacency matrix already defines the size and structure of the transition matrix.
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Math. Model: Local Terrain Property and Score Maps

» Local Terrain Maps — as imaged by the onboard sensors — are obtained by
~-masking“ the terrain property maps (slope, roughness, shadow, ...) with the FOV
adjacency matrix.

« Each column of a n? x n2 terrain matrix contains a local map seen from the
associated position.

» The onboard HDA decision-making calculates score or cost values for alternative
landing spots:

« Simple example:
Score S = f(slope L, roughness R, shadow S) = 1-(L+R+S)/(L 0t Rimaxt Smax)
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Math. Model: Decision Making under Uncertainty
* In the presence of errors the score values become random numbers,

» Relevant for HDA: what is the likelihood P(a, > a,) that a, excceds a, although not
representing the true best alternative?

* Probabilities assigned to all score values of the Score matrix, which yields the
transition matrix TOI
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Application Example

90°E

A robotic lunar lander

» Flight system (not exactly ESA LL): capable of one
HDA maneuver, performances: Table below

« Landing Site: Lunar South Pole »Connecting
Ridge«, DTMU from stereo images 5x5km2 @
2m/px

Parameter Value

Nominal Landing Site Coordinates, Lat/Lon [°] 89.4S / 137.4W

Along Track Error (3c) at High Gate [m] 360

Cross Track Error (3c) at High Gate [m] 240
Ground Track Azimuth [°] 180

Divert Distance Capability, omnidirectional [m] 170 (from 1000m)
LIDAR Field of View [°], resolution [px] 20, 700x700
Camera FOV [°], res. [px] 70, 1024x1024
Slope Determination Error [°] 2.5
Roughness Determination Error [m] 0.35

lllumination Determination [bit grayscale] 10
[1] F. Scholten, et.al, NAC_DTM_ESALL_CR1, Connecting Ridge Potential Landing Site for

ESA Lupar Lander, [http://wms.Iroc.asu.edu/Iroc/view_rdr/NAC_DTM_ESALL_CR1], 2012
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Application Example

e High resolution DTM data is
used to derive terrain
property data.

* Used to ,mimic* the onboard oo’
sensor based mapping.

e Landing zone is 1x1km?2




Probability P [-]

Application Example

Initial dispersion Po.

in a vector notation: p, Transition Matrix T Post HDA-dispersion p;

back into matrix notation P,
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y [m]

: - Probability to land on slope less than 5°:
Application Example 24.9% wio HDA

99.9% with HDA
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Conclusions

» A stochastic model to predict landing dispersion pattern for HDA-capable flight
systems has been developed,

* It integrates key functional elements of a HDA architecture,

* Nevertheless, the model is low fidelity, but calculates dispersion pattern on
“one shot”,

* Numerical efficient if implemented correctly (this example: ~5min on an PC,
using MATLAB).

 The use of this method is intended in:

» an early mission study phase to analyze mission requirements or system
baselines and their effect on the risk of terrain related failure.

* later study phases — after being validated by or calibrated against high-fidelity
simulations — as efficient tool to estimate landing success probabilities.

» This talk omitted most of the mathematical details and its numerical implementation,
but the method is peer-reviewed and published:

« Witte, L., Stochastic Modeling of a Hazard Detection and Avoidance
Maneuver — The Planetary Landing Case, Reliability and System

! Safety 119 (2013)
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