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Motivation for N and noble gas elemental abundance and isotope measurements
e Giant planet formation
* Terrestrial planetary atmosphere evolution

36Ar/38Ar and °N/1*N as tracers of atmospheric loss
e Jupiter and sun provide primordial reservoir
* Mars measurements with enrichment techniques
* Venus measurements in future missions

Heavy noble gases give signatures of early evolutionary processes
e Static mass spectrometry
e Future Mars, Venus, and cometary measurements

Chronology from spallogenic, neutron capture, and radiogenic noble gas isotopes
e Lunar radiogenic *°Ar from the LADEE NMS
e First planetary K-Ar chronology experiments
e Cosmic ray exposure age from MSL APXS and SAM combined measurements

Upcoming opportunities for in situ measurements and emerging technologies



Elemental ratios of N, noble gases, & other light elements provide basis

for models of giant planet formation & planetary atmosphere evolution
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Galileo Probe Mass Spectrometer had an early version of an enrichment

system but without “static” mass spectrometry
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‘ GPMS with an enrichment system but without “static” mass spectrometry

- GPMS employed getters & a miniature ion pumps
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Curiosity’s primary scientific goal is to explore and quantitatively assess a

T -
" oy ey e
- o
A ) .

local region on Mars’ surface as a potential habitat for life, past or present
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Sample Analysis Instrument Suite on the Curiosity Rover is designed to

carry out a range of isotopic studies of light elements and noble gases

SAM integrated into 1\

rover January 2011 /E\




Gas Flow Diagram of the Sample Analysis Instrument Suite on the

Curiosity Rover (QMS, TLS, GCMS, 54 valves, heaters, enrichment system)
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Multiple processes contribute to the loss of planetary atmospheres but

most loss process to space enrich the remaining heavy isotopes

clays sulfates anhydrous ferric oxides
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5'N/14N attributed to atmospheric loss on Mars

Measured at Jupiter and Mars but not Venus
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m/z 36, 38 QMS Signal (cps)

*°Ar / “CAr

On Curiosity at night there is ample time and power to make extended

measurements
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36 . .38 .
Ar/ Ar ratio

Isotopes of C, O, N, H in carbon dioxide, water, nitrogen, and noble gases

provide key signatures of atmospheric loss

30Ar/32Ar - a robust signature of atmospheric loss from Mars
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All isotopes measured on mars point to atmospheric loss. Additional

isotope ratios can be secured with SAM from thermally evolved gas

&38Ar,, 310+ 31 QMS Atreya et al. (2013, GRL)
S4ArL, h 5419 + 1013 QMS Mahaffy et al. (2013, Science)
8N, 572 + 82 QMs Wong et al. (2013, GRL)
&13Cppp 45+ 12 QMS Mahaffy et al. (2013, Science)
&13Cpps 46+ 4 TLS Webster et al. (2013, Science)
8800w 48 + 5 TLS Webster et al. (2013, Science)

&D<piow 4950 + 1080 TLS Webster et al. (2013, Science)



' ﬂUE“ MAVEN Will Measure the Drivers,
Reservoirs, and Escape Rates
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Nucleogenic & cosmogenic noble gas production

Cosmogenic noble gas production from the top 750-1000
g/cm?
 Include 3He, 13C, N, “°Ne, 2INe, ?°Ne, 36Cl, 3CAr, 3BAr
from nuclear spallation of O, Na, Mg, Al, Si, CI, Ca, and
Fe
e Calculated from GEANT simulations of nuclear spallation
reactions
e Current Mars atmosphere ~20 g cm= - surface
production similar to the moon
e 3%Ar produced by capture of thermal neutrons by 3°Cl
e Lunar samples used to secure averaged GCR flux
e Production rates typically picomole gm-1 Myr-1

Radiogenic isotopes
 Include 4°Ar from 4°K and 1%°Xe from 129
e Lower production rates but throughout the crust



First in situ rock formation age experiment

on another planet

40Ar discovered in 1938 by

geophysicist Lyman Aldrich & mass 40K half life 1.249x10° years
spectrometer guru Al Nier

McDougall &
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Radioactive decay equation
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Crater densities used to estimate ages of geological units on

Mars — model comparison Stephanie Werner/U. Oslo
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First in situ rock formation age experiment
on an Other plan et Sample Mass 0.135+£0.018 g
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Gale Crater region:
4.2 (+ 0.4) billion years old

Conclusion —rock sediment that washed down from the rim of Gale Crater was
formed ~4.2 billion years ago — this consistent with crater densities



First cosmic ray exposure age experiment
on another planet
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Cosmic ray exposure determination important to understand extent of transformation
of organic compounds and possible destruction of biosignatures



First in situ planetary cosmic ray exposure age experiment

Cosmogenic Isotopes
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Isotope pmol/g + Surface 2m Average
337 6.9 0.466 0.254

“He
INe 4.49 1.52 0.054 0.034

*®Ar 356 16.8 0.714 1.029
Motes: elemental composition from APXS measurement of Cumberiand drill tailings. *Model isotope production rate (47)

BSurface exposure age assuming no erosion.
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Ratios of noble gases can discrimi

continuous vs. rapid erosion —

nate between the end members of
Figures from Farley et al. 2014

SAM result = 36Ar/SHe =1

7+0.5 and 3Ar/?INe = 12+5
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Fig. 3. Depth dependence of cosmogenic isotope production rates
modeled for a rock of Cumberland mudstone chemistry on Mars. *He
and “'Ne are spallation isotopes, while *Ar is produced by capture of
cosmogenic neutrons. Note the multiplicative factors applied to *He and “'Ne.
A mudstone bulk density of 2.6 gh:m3 was assumed to convert overburden
mass to linear depth.

00 Fig. 2. Mars Hand Lens Imager (MAHLI) image of brushed,
gray bedrock outcrop of Sheepbed mudstone near the
Cumberland drill hole. Protrusion of nodules (9) results from
eolian scouring of rock surface, creating wind-tails. Preference
for steep faces of wind-tails on NE side suggests long-term
averaged paleowind direction from NE to SW. This is a portion
of MAHLI image 0291MH0001970010103390C00, acquired
on Sol 291. lllumination from the top/upper left.



SAM noble gas measurements are pointing toward the best locations
to search for minimally transformed organic compounds
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SAM’s commanding language allows us great flexibility in generation
of new sequences on Mars as we make discoveries — we keep a
dupllcate SAM operatlonal at NASA Goddard to test these scripts




: .}~ Improved precision for future planetary in situ chronology experiments

now seems within reach

4 http://www.gps.caltech.edu/~jac/IDKA

| 1D/

Isotope dilution technique developed

_ by Farley, Cartwright, and others
Martian . 0 o
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http://www.gps.caltech.edu/%7Ejac/IDKArD/

Future challenges for N and noble gas elemental and isotope ratio

measurements include Decadal Study targets Venus and Saturn

Large uncertainties in Venus noble gas
measurements — just an upper limit for Xe
from Pioneer Venus MS measurements

In situ measurements utilizing enrichment
techniques can address this record

The heavy Xe noble gas with its 9 isotopes
provides the best record of early planetary

processes
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