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Earth, Venus, Mars, and Titan Parameters

Derived From: Justus, C.G. and Braun, R.D. (2007). Atmospheric Environments for Entry, Descent and Landing (EDL). MSFC-198.

“LN2 on Earth” “Kitchen Oven 
Clean Cycle”

2



© 2011 AeroVironment, Inc.© AeroVironment, Inc. June 2014

[#8081]

Dynamic Pressure, Lift and Drag

Dynamic pressure is a measure of how much force 
per unit area you get when moving through a fluid.

𝑞𝑞 = 1
2𝜌𝜌𝑈𝑈

2

Lift Force 𝐿𝐿 = (12𝜌𝜌𝑈𝑈
2 )𝐶𝐶𝐿𝐿𝐴𝐴,  CL ~ O(1)

Drag Force 𝐷𝐷 = (12𝜌𝜌𝑈𝑈
2 )𝐶𝐶𝐷𝐷𝐴𝐴

Weight W = mg

Gliding flight L=W

 Low density means you need to go fast or have a 
large lifting surface to get useful lift forces.

 High density means you go slow because 
otherwise you have to overcome large drag 
forces.

Selig, M.S., Guglielmo, J.J., Broeren, A.P., and Giguère, P., (1995) Summary of 
Low-Speed Airfoil Data, Vol. 1, SoarTech Publications.
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Reynolds and Mach Numbers (Subsonic)

Mach Number
 Ratio of flow speed to speed of sound, M = U/a

 CP,M
CP,i

= 1
1−M2 (Glauert-Prandtl rule)

 Less Lift and significantly more drag above M~0.6
 Just stay below M=0.6-0.7

Abbott, Ira H.; Doenhoff, A. E. von (2012). Theory of Wing Sections: Including a Summary of Airfoil. 
Dover Publications. Kindle Edition. 

Reynolds Number
 ‘The relative influence of inertial and viscous forces’ 

𝑅𝑅𝑅𝑅 = 𝜌𝜌𝑈𝑈𝑈𝑈
𝜇𝜇

= 𝑈𝑈𝑈𝑈
𝑣𝑣

 Useful to talk about the character of a flow, i.e., Flow 
Separation, Turbulence, Skin Friction, Lift and Drag

 Prediction of best airfoil performance.

(a) Wakeling, J.M., and 
Ellington, C.P. (1997) 
“Dragonfly Flight I. Gliding 
Flight and Steady-state 
Aerodynamic Forces,” The 
Journal of Experimental 
Biology 200, 543-556.
(b) Selig, M.S., Guglielmo, J.J., 
Broeren, A.P., and Giguère, 
P., (1995) Summary of Low-
Speed Airfoil Data, Vol. 1, 
SoarTech Publications.
(c) Lyon, C.A., Broeren, A.P., 
Giguère, P., Gopalarathnam, 
A., and Selig, M.S. (1998) 
Summary of Low-Speed Airfoil 
Data, Vol. 3, SoarTech 
Publications.
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Venus

 Release from 60 km altitude
 ~1 hours total flight duration
 10km of linear coverage at 1-2km altitude
 20kg total vehicle mass
 Spherical Pressure Shell 0.38m diameter.

 High Temperatures  short flight
 High density  slow flight
 High Re  reasonable L/D
 Speed of sound not a driving factor
 Use a simple drag build for the glider
 FYI: mgh = 10MJ

1

2

3

Phase Altitude 
(km)

Description Comments Re/1e6 Mach Speed 
(m/s)

Wind 
(m/s)

Time 
(min)

Cum Time 
(min)

1 50-60 Traverse • Glide slope is ‘best effort’ ~ 9:1 relative to the wind.
• Use simple drag build to determine glide slope.

0.7 0.3 80 75-50 20 20

2 2 to 50 Rapid 
Descent

• Vertical speed is limited by vehicle drag and speed of sound 
• Spoilers or Crow flaps are needed between 50 and 60km

1-3 0.6-0.1 190-50 75-0 10 30

3 1 to 2 Gather Data 
(Threshold)

• Glide with a > 10:1 glide ratio for 10km, take pictures
• This phase sets the air vehicle glide performance 

requirement
• Use simple drag build to determine glide slope

3.5 0.02 9 ~0 20 50

4 0 to 1 Gather Data 
(Bonus)

• Continue gliding until impact with ground. 3.5 0.02 9 ~0 20 70

4

Mission: Near Surface Area Photography, Single Use 
Glider Sonde
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Approach
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 Parameterize Air Vehicle
 Solve for fastest speed that will yield an L/D of 10:1 (to minimize flight time)
 Solve for terminal speed and time to descend to altitude.  

• Add drag brakes as needed to prevent exceeding M=0.6
 Solve for L/D at release altitude and compute time to transit.
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Titan

 <10 kg total vehicle mass
 10 km balloon altitude
 2 m/s balloon speed
 20W & 0.25kg for avionics & sensors

 Multi-copter is a mechanically simple VTOL
 Low gravity  low penalty for climbing
 High density  low speeds, less mass in propulsion
 Low Temperatures  insulation, volume, and drag.
 Use momentum theory for VTOL performance
 Speed of sound not a factor
 Density ratio 1.5 from 0-10km  similar performance over alt.
 Low wind speeds  we can get back to our balloon.

1

2,3

4

5

Phase Altitude 
(km)

Description Comments Power 
(W)

Speed 
(m/s)

Wind 
(m/s)

Time 
(min)

Cum Time 
(min)

Cumulative 
Energy (Wh)

1 10-0 Descent • Zero or negative (charging) propulsion power
• Descent Rate can be controlled with rotors 20 11 2 15 15 5

2 0 Hover/Land • Momentum Theory in Hover 
• rotor FOM = 75%, Disk loading = 100 Pa 100 0 0 5 20 13

3 0 Gather Data • 5 minutes 20 0 0 5 25 15
4 0-10 Take off and 

climb
• Momentum Theory in Climb

• Rotor FOM = 75%, Same Rotor as above
• Constant Climb Rate

• Add Fuselage Drag

255 8 2 20 45 100

5 10 Hover and 
Mate with

Balloon

• Momentum Theory in Hover 
• rotor FOM = 75%, Disk loading = 100 Pa 115 0 2 5 50 110

Mission: Sample and return (with vertical take off 
and landing vehicle)
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Approach

 Multi-copter configuration
 Momentum Theory for Hover and Climb
 We can design a rotor with a FOM = 0.75
 Disk loading (T/A) is 100 Pa
 Fuselage drag is like a sphere based on frontal 

area (used to estimate drag in climb)
 Airframe and propulsion is 50% of total vehicle 

mass.
 Fuselage density is around 300 kg/m3

 JPL Avionics and Payload are 0.25kg and uses 
an average of 20W.

 No propulsion power is required for descent
 Motor efficiency is 85%, Controller is 95%.
 Compute Power consumption and battery mass 

using a specific energy of 100 Wh/kg

 Compute for a range of Vehicle gross masses -
Remaining mass is margin

Momentum theory for rotors in hover and climb
Thrust T
Density ρ
Rotor Swept Area A
Climb Rate U
Figure of Merit FOM
Induced Velocity             𝑢𝑢ℎ = ⁄𝑇𝑇 (2𝜌𝜌𝜌𝜌)

Hover Power                   𝑃𝑃ℎ = 𝑇𝑇 𝑢𝑢ℎ/𝐹𝐹𝐹𝐹𝐹𝐹

Climb Power                   𝑃𝑃𝑐𝑐 =
𝑇𝑇 1

2𝑈𝑈+
1
2𝑈𝑈

2
+𝑢𝑢ℎ2

𝐹𝐹𝐹𝐹𝐹𝐹
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Mars

 Mars surface density and speed of sound
 Vehicle Mass = 1kg.
 Airframe and Propulsion < 500 grams
 Thrust > Weight

 Low density  need high rotor speed
 Vehicle drag not significant in forward flight (or sitting on 

the ground)
 Rotorcraft allow high speed propeller, but can fly slow.
 Low speed of sound  limits rotor speed  large rotors 
 increase weight...

 Low Reynolds number  limits efficiency and flight time.
 HOGE requires the most power

Mission: Demonstrate Aerial Rover-Like Capability

Mass 1 kg Design Mass. 50% for avionics, sensor, batteries, 50% for
airframe and propulsion.

Rotor Diameter 1.1m Fits in box when folded

Nominal Rotor Hover Power 130W Nominal over operating envelope

Rotor Peak Power Margin for 
Maneuvering

50% Accounts for maneuvering acceleration and gust 
compensation

Design Density 0.012 – 0.015 kg/m3 Variation to account for altitude, temperature, latitude, etc.
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Approach

 Estimate Rotor Performance
• Estimate airfoil performance at design conditions
• Use propeller design & analysis code to estimate propeller 

performance and design blades for best efficiency, vary and 
constrain diameter, chord, tip speed

 Optimize Potential Configurations 
• Employ ‘rubber’ mass models for many parts.
• Optimize parameters for maximum endurance; constrain tip speed, 

solidity, disk loading.

 Increase Fidelity of Estimates
• Use CFD (Fluent) to test the performance of a candidate airfoil for 

low Re.
• Test candidate airfoil on a rotor in mars-like atmosphere in JPL’s 

10ft Vacuum Chamber – Performance was only 10% lower than 
expected from Fluent airfoil analysis and within design goals.

• Develop preliminary Solid Model and BOM for candidate design
• Evaluate masses against design goals

 Revisit Assumptions
 Test Optimized Rotor Design
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End

 There is lots of margin when considering an air vehicle on Venus and 
Titan. Non-aero factors will drive these designs.

 Mars does not have much margin.  We will need to fight for every 
gram and every percent to ensure success.

 Questions?
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