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e 2013 Science Definition Team (SDT) report outlined a mission concept for the Mars
2020 rover, that includes:
— “..select and store a compelling suite of samples in a returnable cache...”

e Recent studies of approaches to the return of samples from Mars propose a three-
mission architecture:

1. Sample caching rover
2. Sample retrieval and launch (SRL) mission
3. Sample return orbiter

e Although there are currently no approved plans to return the Mars 2020 sample cache,
a future SRL mission would need to access the same landing site as Mars 2020
e Potential challenges:
— SRL may be heavier than M2020
— SRL may launch in a poorer opportunity (from an EDL perspective) than M2020
— SRL may need to be solar powered, due to mass or configuration challenges

e Current desire is for SRL EDL system to be as close as possible to the build-to-print
MSL/M2020 EDL system
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1. To understand the impact of a larger landed mass on the
heritage MSL/M2020 EDL assumptions and performance

— Looked at landed masses up to 1200 kg

2. To understand what landing sites can be reached (altitude)
by the SRL mission under different arrival seasons and design
assumptions

— Looked at a range of arrival seasons

— Looked at potential improvements in parachute performance
J Based on ongoing Low Density Supersonic Decelerator (LDSD) program
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e Simulation approach:

— Used baseline Mars 2020 assumptions for hardware, software and timeline,
vehicle mass properties, and entry interface condition

— Flew all simulation cases to Gale Crater latitude/longitude and altitude with
synthetic terrain

— Applied seasonal atmosphere assumptions for given Ls

— Increased landed mass to 1200 kg (no change to non-landed hardware)
— Evaluated higher Mach parachute deploy (up to Mach 2.4)

e Monte Carlo runs performed for selected arrival dates and parachute
deploy Mach numbers

— Used heritage simulation environment (POST) of the MSL/Mars 2020 EDL team

e Developed partials from the simulation results to extrapolate to other
design points
— Ls sweep: density vs. parachute deploy altitude
— Mass sweep: ballistic coefficient vs. parachute deploy altitude
— Terminal velocity: trade timeline margin for landed altitude
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e Previous EDL studies identified potential fuel margin break point near 1200 kg
— Current study produced similar results
— Landing 1200 kg results in £ 5 kg of unallocated fuel margin (worst case)

e Preliminary SRL studies suggest 1200 kg is a reasonable upper bound for

landed mass
MAX-C + ExoMars MAV + Fetch + Lander: 1005 kg Mobile MAV: 1050 kg
+ Pallet: 960 kg g
== €0 0®

(Decadal Survey MCS, 2010) (Decadal Survey MCS, 2010) (Team X Study, 2012)

e Additional issues related to landed 1200 kg with current EDL system
— Available volume and packaging concerns

— Powered Descent Vehicle (PDV) modes

— May require redesign of parts of the EDL system (e.g., descent brake portion of BUD)
— Mobility and touchdown performance capabilities
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Landed mass ) B
— ~1 km effect from 900 kg to 1200 kg . cotnat)
. oS,
@ Arrival season — N\,
— ~2.5 km effect from pressure cycle variation % ‘;:‘i::\\% < \\‘
Parachute technology — increase in deploy Mach . g \ f
— ~1.5-2 km effect, increasing Mach to 2.4 nominal -
— Note: area oscillations not modeled 5 S S R (RN AN AN N |

e Second order effects (< 0.5 km delta on landed elevation)
— Entry velocity (~¥50 m altitude per +0.1 km/s entry velocity)
— Entry FPA optimization (very small sensitivity)
— Time of day (~2-4% density variation = up to ~350 m impact)
— Landing site latitude (<6% density variation = up to ~500 m impact)
— Dust storms, Ls 180-330 (impact expected to be < 0.5 km)
— **Second-order variables were held constant in analysis
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e Landing site elevation capability as a function of landing season
— Blue points assume current parachute (DGB) capability
— Red points assume higher Mach parachute capability
— Study result partials applied to get cases beyond those run directly
— Results have a ~ +/- .5km error
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Landed Altitude Capability, MOLA (km)
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Notes:

- Results assume baseline M2020 hardware, software and timeline, vehicle mass properties, and entry interface condition
- Close to equatorial landing site (Gale Crater)
- Effects of dust not considered (Ls = 180-330)
- Results are accurate to within + ~0.5 km
- High fidelity cases were run at 1200 kg; altitude performance at other landed masses was calculated using ballistic coefficient partial
- Each launch opportunity has a range of viable arrival Ls values; ranges shown for realistic values of C3, entry velocity, and TOF
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e There is sufficient fuel to land 1200 kg, but available development margin is thin

e Sites at or below ~-1.0 km MOLA should be reachable by future SRL missions
using existing EDL capabilities

Within capabilities for consecutive opportunities from 2028 — 2035

— Ability to reach -1.0 km before 2028 will depend on landed mass required

— Maximum possible elevation for a 1200 kg SRL is ~+0.5 km

Higher altitude landing sites (> -1.0 km MOLA), if chosen, can still be accessed

but may require:
Delaying retrieval mission to opportunities with more favorable landing conditions

(2028+), or
Adopting technologies to improve delivered mass (LDSD parachute), or

Investing in technologies to reduce landed mass requirements (esp. MAV)

e Other factors not considered in this study:

— Landed precision
— Landing site latitude
— Design of future SRL rover
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MSL Mars 2020 Baseline Assumed SRL

Launch Vehicle Atlas V 541 Atlas V 541 (pending LV TBD

selection)
Arrival Ls 150.6° 6°-7° Depends on Opportunity
Entry Mass 3152 kg ~3250 kg ~3550 kg
Landed Mass 899 kg Up to 960 kg 1200 kg
Parachute Deploy Mach 1.75 Nominal: 2.05 TBD

Spread to: 2.2-2.3
Ballistic Coefficient 136 kg/m? 140 kg/m? 153 kg/m?
Landed Elevation -4.4 km (actual) TBD TBD
Max Elevation Capability -1 km MOLA +0.5 km MOLA TBD
Landed Ellipse * Original: 25km x20km | * 25 km x 20 km TBD

*  Final: 19 km x 7 km

* Final expected with
range trigger: 13 km x
7 km
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. Flew all simulation cases to Gale latitude/longitude and altitude with synthetic terrain
. Didn’t increase mass of non-lander hardware (also didn’t look at TPS)

. Entry vehicle fixed at MSL-like conditions (~6 km/s inertial, ~5.7 km/s atmosphere relative, EFPA = -15.5°,
entry time of day ~3 PM)

J Seasonal dust assumptions, no dust storms considered
. “Engineering” winds applied for all cases, regardless of landing season

. Didn’t tune entry guidance for landing season, but did tune guidance for higher Mach parachute deploy
cases

e Didn’t take advantage of potential higher subsonic Cd from a disksail parachute
. Didn’t look at larger diameter chute
e  Turned off area oscillations modeling (significant lien on high Mach results)

. Used a floor of 20 s of timeline margin
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e Disabled area oscillations model

— Results in severe angular rates and accelerations; magnified with greater
exposure time due to high Mach deploys

— Models based on one data point from BLDT
— Upcoming LDSD tests may provide additional insight

e Did notincrease mass of non-lander hardware

e Dust storms were ignored
— Applicable to Ls 180 —-330

— Impact on altitude performance expected to be < 0.5 km (density
reductions less than previously believed)

— Principal issue is changes in expected wind fields (landing precision)

e Fuel for TRN
— Did not consider fuel impact for longer TRN/Multi-X diverts
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