National Aeronautics and Space Administration Logo
Follow this link to skip to the main content NASA Banner
Solar System Exploration
Facebook Twitter YouTube Facebook Twitter YouTube Flickr iTunes
Follow Us
Decadal Survey Document Listing

Browse and search white papers and mission & technology studies received by the Planetary Science Decadal Survey. Click here for basic user instructions.

Filter by category:
Keyword search:
Separate multiple search terms with:
Apply keywords to these fields:
Author    Co-Authors    Title    Summary    Panel Selection    Institution   

Total results: 198

PREV | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | NEXT       View All Results       Print Results       Download as PDF

Authors Title Summary Panel Selection Institution Download/
Details
Barry Geldzahler

Co-Author: Les Deutsch
Future Plans for the Deep Space Network (DSN) NASA’s Deep Space Network (DSN) is a critical part of every NASA solar system mission, serving as the entity that ties the spacecraft back to Earth and providing data from science instruments, information for navigating across the solar system, and valuable radio link science and radar observations. Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Giant Planets: Jupiter, Saturn, Uranus, Neptune, and exoplanets, including rings and magnetic fields, but not their satellites. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. NASA Headquarters Download File

More Details
Reta F. Beebe

Co-Authors: Charles Acton, Raymond Arvidson, Jim Bell, Dan Boice, Scott Bolton, Steven Bougher, William Boynton, Daniel Britt, Marc Buie, Joseph Burns, Maria Teresa Capria, Angioletta Coradini, Daniel Crichton, Peter Ford, Richard French, Lisa Gaddis, Peter Gierasch, Randy Gladstone, Mitch Gordon, Ronald Greeley, Kenneth Hansen, Jakosky, Bruce, Yasumara Kasaba, Krishan Khurana, William Kurth, Emil Law, Ralph Lorenz, Conor Nixon, Chris Paranicus, Wayne Pryor, Thomas Roatsch, Chris Russell, Gerhard Schwehm, Richard Simpson, Mark Sykes, Dave Tholen, Raymond Walker, Paul Withers, Joseph Zender
Data Management, Preservation and the Future of PDS This paper summarizes the history, evolution and current status of analysis and archiving of planetary science data. It presents goals for PDS 2010, a revised PDS, and addresses conditions needed to achieve those goals. Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Giant Planets: Jupiter, Saturn, Uranus, Neptune, and exoplanets, including rings and magnetic fields, but not their satellites. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. New Mexico State University Download File

More Details
Oleksandr Potashko Atmosphere as Sign of Life Is there a feature of presence of life on a macro-level? Could we say something about life on Neptune or on Halley’s Comet or on an exoplanet? Let’s consider that sign of life is an atmosphere. Let''s consider crustal planet. Whether planet has an atmosphere we may say that it is alive in geologi Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Giant Planets: Jupiter, Saturn, Uranus, Neptune, and exoplanets, including rings and magnetic fields, but not their satellites. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. SF ''Fractal'' Download File

More Details
Eliot F. Young

Co-Authors: Charles Hibbitts, Joshua Emery, Amanda Hendrix, William Merline, William Grundy, Kurt Retherford
Balloon-Borne Telescopes for Planetary Science: Imaging and Photometry This white paper advocates the use of balloon-borne telescopes for diffraction-limited imaging in visible wavelengths by demonstrating their technical readiness and low cost relative to space- and ground-based facilities. Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Giant Planets: Jupiter, Saturn, Uranus, Neptune, and exoplanets, including rings and magnetic fields, but not their satellites. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. Southwest Research Institute Download File

More Details
Saumitra Mukherjee Effect of Star-burst on Sun-Earth environment Starbursts produces extragalactic cosmic rays which initiate the Sun to develop low Planetary Indices (Kp) and low Electron flux (E-flux) condition of Sun-Earth Environment which leads to snowfall on earth and some changes in other plants of the solar system Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Giant Planets: Jupiter, Saturn, Uranus, Neptune, and exoplanets, including rings and magnetic fields, but not their satellites. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. Jawaharlal Nehru University Download File

More Details
J. Edmund Riedel

Co-Authors: MiMi Aung, Paul G. Backes, David S. Bayard, David S. Berry, John R. Brophy, L. Alberto Cangahuala, Steve A. Chien, Christopher A. Grasso, Jeffery W. Levison, Tomas Martin-Mur, William M. Owen, Jr., Stephen P. Synnott
A Survey of the Technologies Necessary for the Next Decade of Small Body and Planetary Exploration Deep space reconnaissance and sample return missions will require a range of technology developments for maximum science return. These technologies include propulsion; telecommunication; remote sensing; guidance, navigation and control; sampling; onboard processors; and autonomy. Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Giant Planets: Jupiter, Saturn, Uranus, Neptune, and exoplanets, including rings and magnetic fields, but not their satellites. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. Jet Propulsion Laboratory Download File

More Details
Nathan J. Strange

Co-Authors: Daniel Scheeres, Ryan Russell, Kathleen Howell, James Longuski, Victoria Coverstone, David B. Spencer, Cesar Ocampo, Belinda Marchand, Terry Alfriend, John Junkins, Daniele Mortari, John Crassidis, Landis Markley, David Folta, John Dankanich, Shyam Bhaskaran, Dennis Byrnes, Kim Reh, Martin Lo, Jon Sims, John C. Smith, Brent Buffington, Anastassios Petropoulos, Damon Landau, Fernando Abilleira, Ryan Park, Jeffrey Parker, Julie Bellerose, Stefano Campagnola, Andrew Klesh, Nitin Arora, Diane Craig Davis, Kevin Kloster, Alfred Lynam, Geoff Wawrzyniak
Astrodynamics Research and Analysis Funding Funding for astrodynamics research has been largely limited to the development and operations phases of missions. Early funding for astrodynamics research would produce new techniques prior to formulation of missions, which could lead to novel and exciting concepts. Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Giant Planets: Jupiter, Saturn, Uranus, Neptune, and exoplanets, including rings and magnetic fields, but not their satellites. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. Jet Propulsion Laboratory Download File

More Details
David R. Thompson

Co-Authors: David R. Thompson, Robert C. Anderson, Benjamin Bornstein, Nathalie A. Cabrol, Steve Chien, Tara Estlin, Terry Fong, Robert Hogan, Ralph Lorenz, Daniel Gaines, Martha S. Gilmore, Mario Parente, Liam Pedersen, Ted L. Roush, Giuseppe Marzo, David Wettergreen
Onboard Science Data Analysis: Implications for Future Missions Onboard science data analysis enables new spacecraft operational modes that improve science yield. It can relieve constraints on time, bandwidth and power, and respond automatically to events on short time scales. We examine applications to rover, aerobot, and orbital platforms. Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Giant Planets: Jupiter, Saturn, Uranus, Neptune, and exoplanets, including rings and magnetic fields, but not their satellites. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. Jet Propulsion Laboratory Download File

More Details
Charles A. Hibbitts

Co-Authors: James Bauer, Pietro Bernasconi, John Clarke, Deborah Domingue Josh Emery, Randy Gladstone, Tommy Greathouse, Gary Hansen, Walt Harris, Amanda Hendrix, Noam Izenberg, Carey Lisse, Larry Paxton, Jeff Percival, Kurt Retherford, Andy Rivkin, Mark Swain, Eliot Young
Stratospheric Balloon Missions for Planetary Science A Petition for the Formation of a Working Group to Study the Feasibility of a Facility Platform to Support Planetary Science Missions Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Giant Planets: Jupiter, Saturn, Uranus, Neptune, and exoplanets, including rings and magnetic fields, but not their satellites. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. Johns Hopkins University/ Applied Physics Laboratory Download File

More Details
Sami W. Asmar

Co-Authors: Kaare Aksnes, Roberto Ambrosini, Aseel Anabtawi, John D. Anderson, John W. Armstrong, David Atkinson, Jean-Pierre Barriot, Bruno Bertotti, Bruce G. Bills, Michael Bird, Veronique Dehant, Peter Edenhofer, F. Michael Flasar, William Folkner, Richard G. French, Hideo Hanada, Bernd Häusler, David P. Hinson, Luciano Iess, Özgür Karatekin, Arvydas J. Kliore, Alex S. Konopliv, Frank Lemoine, Ivan Linscott, Essam Marouf, Jean-Charles Marty, Koji Matsumoto, Hirotomo Noda, Kamal Oudrhiri, Meegyeong Paik, Ryan S. Park, Martin Pätzold, Robert Preston, Nicole Rappaport, Pascal Rosenblatt, Richard A. Simpson, David E. Smith, Suzanne Smrekar, Paul G. Steffes, Silvia Tellmann, Paolo Tortora, G. Leonard Tyler, Tim Van Hoolst, Michael Watkins, James G. Williams, Paul Withers, Xiaoping Wu, Donald Yeomans, Dah-Ning Yuan, Maria T. Zuber
Planetary Radio Science: Investigations of Interiors, Surfaces, Atmospheres, Rings, and Environments Scientists utilize radio links between spacecraft and Earth or between spacecraft to examine changes in the phase/frequency, and amplitude of radio signals to investigate atmospheres and ionospheres, rings, surfaces, shapes, gravitational fields, and dynamics of solar system bodies. Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Giant Planets: Jupiter, Saturn, Uranus, Neptune, and exoplanets, including rings and magnetic fields, but not their satellites. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. Jet Propulsion Laboratory Download File

More Details
Julie Castillo-Rogez

Co-Authors: William B. Durham, Essam Heggy, Mathieu Choukroun, Jerome Noir, Sarah T. Stewart, Steve D. Vance, Christine M. McCarthy, Martin B. Barmatz, Pamela G. Conrad
Laboratory Studies in Support of Planetary Geophysics We summarize the rationale for advocating a healthy and sustained program of laboratory research in support of the geophysical exploration of planetary bodies. We address the challenges inherent to this discipline, and we suggest recommendations for the review panel''s consideration. Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Giant Planets: Jupiter, Saturn, Uranus, Neptune, and exoplanets, including rings and magnetic fields, but not their satellites. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. Jet Propulsion Laboratory Download File

More Details
J.B. Dalton

Co-Authors: J.C. Castillo, L.R. Brown, R.P. Hodyss, P.V. Johnson, M. Gudipati, R.M. Mastrapa, K. McKeegan, R.N. Clark, P.H. Schultz, A.R. Hendrix, S.T. Stewart, S. Ruff, K.P. Hand, T. Spilker
Recommended Laboratory Studies in Support of Planetary Science Planetary science in the next decade will include major spacecraft missions to inner and outer solar system targets. Interpretation of these mission observations requires knowledge of fundamental physical and chemical properties of planetary materials. Much theoretical work at present depends upon r Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Giant Planets: Jupiter, Saturn, Uranus, Neptune, and exoplanets, including rings and magnetic fields, but not their satellites. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. Jet Propulsion Laboratory Download File

More Details
Murthy Gudipati

Co-Authors: Michael A''Hearn, Nancy Brickhouse, John Cowan, Paul Drake, Steven Federman, Gary Ferland, Adam Frank, Wick Haxton, Eric Herbst, Michael Mumma, Farid Salama, Daniel Wolf Savin, Lucy Ziurys
Laboratory Studies for Planetary Sciences The WGLA of the AAS promotes collaboration and exchange of knowledge between astronomy and planetary sciences and the laboratory sciences (physics, chemistry, and biology). Laboratory data needs of ongoing and next generation planetary science missions are carefully evaluated and recommended. Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Giant Planets: Jupiter, Saturn, Uranus, Neptune, and exoplanets, including rings and magnetic fields, but not their satellites. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. Jet Propulsion Laboratory Download File

More Details
John D. Rummel Planetary Protection for Planetary Science and Exploration A precis of planetary protection policy concerns, their history, and the role of the SSB and NASA internal advisory activities in ensuring progress and appropriate implementation of the policy. Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Giant Planets: Jupiter, Saturn, Uranus, Neptune, and exoplanets, including rings and magnetic fields, but not their satellites. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. East Carolina University Download File

More Details
Andrew M. Davis

Co-Authors: Meenakshi Wadhwa, Christine Floss, Bradley L. Jolliff, Scott Messenger, Dimitri A. Papanastassiou, Allan Treiman, Andrew J. Westphal
Development of Capabilities and Instrumentation for Curation and Analysis of Returned Samples The purpose of this white paper is to emphasize the importance of investments in sample curation and analytical instrument development for the full realization of the science objectives of any sample return missions in the coming decade. Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. University of Chicago Download File

More Details
Clive R. Neal

Co-Authors: Charles K. Shearer, Meenakshi Wadwha, Lars Borg, Bradley Jolliff, Allan Treiman
Developing Sample Return Technology using the Earth''s Moon as a Testing Ground Lowering cost and risk through development of sample return technologies that can be used on various sample return mission styles is emphasized, as is using the Moon as a testing ground for such technologies. Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. University of Notre Dame Download File

More Details
James W. Ashley

Co-Authors: M. D. Fries, G. R. Huss, J. E. Chappelow, M. P. Golombek, M. A. Velbel, S. W. Ruff, C. Schröder, W. H. Farrand, D. D. Durda, P. A. Bland, I. Fleischer, A. C. McAdam, S. P. Wright, A. T. Knudson, L. A. Leshin, and A. Steele
The Scientific Rationale for Studying Meteorites found on Other Worlds The ongoing identification of several meteorite candidates on Mars is ushering in a new discipline in the planetary sciences. We feel that cultivating an appreciation for the potential science return represented by meteoritic specimens on Mars and the Moon may be important for the 2013-2022 decade. Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. Mars Space Flight Facility, Arizona State University Download File

More Details
Amy S. Lo

Co-Authors: Howard Eller, Dean Dailey, Eric Drucker, James Wehner
Secondary Payloads Using LCROSS Architecture The ESPA architecture used by the LCROSS mission enables two capable missions for the cost of one launch. This paper describes our approach for leveraging the capability of the new generation of EELVs to enable secondary planetary missions at well below the cost of an independently launched mission. Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. Northrop Grumman Aerospace Systems Download File

More Details
Robert Grimm Electromagnetic Sounding of Solid Planets and Satellites EM methods can sense subsurface structure from meters to a thousand kilometers. This white paper gives a tutorial on material sensitivities, exploration depths, sources, and particularly what measurements must be made for different target bodies, without specific mission endorsements. Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. Southwest Research Institute Download File

More Details
S. W. Ruff

Co-Authors: S. W. Ruff, J. B. Dalton, J. L. Bishop, M. D. Dyar, T. Glotch, W. M. Grundy, V. E. Hamilton, J. R. Johnson, F. Marchis, R. M. Mastrapa, F. M. McCubbin, R. V. Morris, H. Nekvasil, M. S. Ramsey, D. Stillman, S. T. Stewart, S. K. Sharma, A. Wang, and R. C. Wiens
Laboratory Studies in Support of Planetary Surface Composition Investigations This paper demonstrates the need to support laboratory investigations related to the surface composition of planetary bodies Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. Arizona State University Download File

More Details


PREV | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | NEXT       View All Results       Print Results       Download as Excel

These documents have been prepared in coordination with the National Academies of Science in support of the National Academies Planetary Science Decadal Survey. These documents are being made available for information purposes only, and any views and opinions expressed herein do not necessarily state or reflect those of NASA, JPL, or the California Institute of Technology.

Awards and Recognition   Solar System Exploration Roadmap   Contact Us   Site Map   Print This Page
NASA Official: Kristen Erickson
Advisory: Dr. James Green, Director of Planetary Science
Outreach Manager: Alice Wessen
Curator/Editor: Phil Davis
Science Writer: Autumn Burdick
Producer: Greg Baerg
Webmaster: David Martin
> NASA Science Mission Directorate
> Budgets, Strategic Plans and Accountability Reports
> Equal Employment Opportunity Data
   Posted Pursuant to the No Fear Act
> Information-Dissemination Policies and Inventories
> Freedom of Information Act
> Privacy Policy & Important Notices
> Inspector General Hotline
> Office of the Inspector General
> NASA Communications Policy
> USA.gov
> ExpectMore.gov
> NASA Advisory Council
> Open Government at NASA
Last Updated: 9 Apr 2012