National Aeronautics and Space Administration Logo
Follow this link to skip to the main content NASA Banner
Solar System Exploration
Facebook Twitter YouTube Facebook Twitter YouTube Flickr iTunes
Follow Us
Decadal Survey Document Listing

Browse and search white papers and mission & technology studies received by the Planetary Science Decadal Survey. Click here for basic user instructions.

Filter by category:
Keyword search:
Separate multiple search terms with:
Apply keywords to these fields:
Author    Co-Authors    Title    Summary    Panel Selection    Institution   

Total results: 198

PREV | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | NEXT       View All Results       Print Results       Download as PDF

Authors Title Summary Panel Selection Institution Download/
Details
Paul Withers

Co-Authors: Jared Espley, Rob Lillis, Dave Morgan, Laila Andersson, Mathieu Barthélemy, Stephen Bougher, David Brain, Stephen Brecht, Tom Cravens, Geoff Crowley, Justin Deighan, Scott England, Jeffrey Forbes, Matt Fillingim, Jane Fox, Markus Fraenz, Brian Gilchrist, Erika Harnett, Faridah Honary, Dana Hurley, Muffarah Jahangeer, Robert Johnson, Donald Kirchner, Francois Leblanc, Mark Lester, Michael Liemohn, Jean Lilensten, Janet Luhmann, Rickard Lundin, Anthony Mannucci, Susan McKenna-Lawlor, Michael Mendillo, Erling Nielsen, Martin Pätzold, Carol Paty, Kurt Retherford, Cyril Simon, James Slavin, Bob Strangeway, Roland Thissen, Feng Tian, Olivier Witasse
The ionosphere of Mars and its importance for climate evolution The ionosphere of Mars is a key part of the boundary between Mars and the solar wind. The MAVEN mission will improve our understanding of ionospheric properties and processes, including how they affect the escape to space of atmospheric species, but other important questions will remain unanswered. Mars: Not Phobos and Deimos. Boston University Download File

More Details
Ian Crawford

Co-Authors: Mahesh Anand, Professor Mark Burchell, James Carpenter, Barbara Cohen, Leon Croukamp, Andrew Daga, Hilary Downes, Sarah Fagents, Terence Hackwill, James N Head, Essam Heggy, Adrian Jones, Katherine Joy, Christian Koeberl, Philippe Lognonné, Clive Neal, Noah Petro, Professor Sara Russell, Joshua Snape, Larry Taylor, Allan Treiman, Shoshana Weider, Mark Wieczorek, Lionel Wilson
The Scientific Rationale for Renewed Human Exploration of the Moon This paper outlines the scientific benefits that will follow from renewed human exploration of the Moon. [Final version with updated author list] Inner Planets: Mercury, Venus, and the Moon. Birkbeck College London Download File

More Details
Georgiana Young Kramer

Co-Authors: David Blewett, Lon Hood, Jasper Halekas, Sarah Noble, Bernard Ray Hawke, Gunther Kletetschka, Erika Harnett, and Ian Garrick-Bethell
The Lunar Swirls The lunar swirls are high albedo curvilinear surface features coincident with regions of strong remanent magnetism. Investigating the lunar swirls is important to understand the Earth-Moon system, the interaction of planetary surfaces with the solar wind, and how to best explore our solar system. Inner Planets: Mercury, Venus, and the Moon. Bear Fight Center Download File

More Details
Robert F. Arentz

Co-Author: Harold Reitsema
NEO Survey: An Efficient Search for Near-Earth Objects by an IR Observatory in a Venus like Orbit We present a conceptual design based on high-heritage flight systems from the Spitzer Space Telescope and the Kepler mission which will find 90% of all 140-meter NEOS in 7 years after launch, and by 2020, if started soon. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. Ball Aerospace and Technologies Corp. Download File

More Details
Thomas D. Jones

Co-Authors: Rob R. Landis, David J. Korsmeyer, Paul A. Abell, Daniel R. Adamo
Strengthening U.S. Exploration Policy via Human Expeditions to Near-Earth Objects By conducting a series of piloted Near-Earth Object (NEO) missions beginning about 2020, the U.S. will reinforce the scientific, economic, programmatic, operations, planetary defense, and public outreach elements of its human exploration program. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. Association of Space Explorers Download File

More Details
Vincent F. Chevrier

Co-Authors: Derek Sears, Megan Elwood Madden, Essam Heggy
Laboratory Measurements in Support of Present and Future Missions to Mars The case is made that supporting laboratory measurements and facilities should be considered an integral element of the Nation’s Mars exploration program, since they provide a meaningful interpretation of the returned data, validation of theoretical models, and calibration of instruments. Mars: Not Phobos and Deimos. Arkansas Center for Space and Planetary Science Download File

More Details
David A. Williams

Co-Authors: Jani Radebaugh, Rosaly M.C. Lopes, Imke de Pater, Nicholas M. Schneider, Frank Marchis, Julianne Moses, Ashley G. Davies, Jason Perry, Jeffrey S. Kargel, Laszlo P. Keszthelyi, Chris Paranicas, Alfred S. McEwen, Kandis Lea Jessup, David Goldstein, Melissa Bunte, Julie Rathbun, Melissa McGrath, Krishan Khurana, Sébastien Rodriguez, Terry A. Hurford, Amanda R. Hendrix, Michelle Kirchoff
Future Io Exploration for 2013-2022 and Beyond, Part 2: Recommendations for Missions This revised white paper lists our recommendations for mission concepts and instruments to accomplish the science objectives for future exploration of Jupiter''s moon Io for the decade of 2013-2022 and beyond. (Final version with additional coauthors). Giant Planets: Jupiter, Saturn, Uranus, Neptune, and exoplanets, including rings and magnetic fields, but not their satellites. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Arizona State University Download File

More Details
David A. Williams

Co-Authors: Jani Radebaugh, Rosaly M.C. Lopes, Imke de Pater, Nicholas M. Schneider, Frank Marchis, Julianne Moses, Ashley G. Davies, Jason Perry, Jeffrey S. Kargel, Laszlo P. Keszthelyi, Chris Paranicas, Alfred S. McEwen, Kandis Lea Jessup, David Goldstein, Melissa Bunte, Julie Rathbun, Melissa McGrath, Krishan Khurana, Sébastien Rodriguez, Terry A. Hurford, Amanda R. Hendrix, Michelle Kirchoff, Elizabeth Turtle
Future Io Exploration for 2013-2022 and Beyond, Part 1: Justification and Science Objectives This white paper (revised draft) summarizes the current scientific questions regarding Jupiter''s volcanic moon Io, and the scientific objectives and measurements that need to be accomplished by future exploration. (Final version with additional coauthors). Giant Planets: Jupiter, Saturn, Uranus, Neptune, and exoplanets, including rings and magnetic fields, but not their satellites. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Arizona State University Download File

More Details
S. W. Ruff

Co-Authors: S. W. Ruff, J. B. Dalton, J. L. Bishop, M. D. Dyar, T. Glotch, W. M. Grundy, V. E. Hamilton, J. R. Johnson, F. Marchis, R. M. Mastrapa, F. M. McCubbin, R. V. Morris, H. Nekvasil, M. S. Ramsey, D. Stillman, S. T. Stewart, S. K. Sharma, A. Wang, and R. C. Wiens
Laboratory Studies in Support of Planetary Surface Composition Investigations This paper demonstrates the need to support laboratory investigations related to the surface composition of planetary bodies Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Satellites: Galilean satellites, Titan, and the other satellites of the giant planets. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. Arizona State University Download File

More Details
Samuel J. Lawrence

Co-Authors: Georgiana Y. Kramer, Bradley L. Jolliff, B. Ray Hawke, Mark S. Robinson, Justin J. Hagerty, G. Jeffrey Taylor, Jeffrey Plescia, W. Brent Garry, Julie D. Stopar, Brett W. Denevi, S. E. Braden, L. R. Ostrach, David T. Blewett, Tomas Magna, Thomas R. Watters, Lisa R. Gaddis, Rongxing Li, Clive R. Neal, Jeffrey Gillis-Davis
Sampling the Age Extremes of Lunar Volcanism: the Youngest and Oldest Lunar Basalts Automated sample return missions to the youngest (Procellarum) and oldest (cryptomaria) basalts on the lunar surface will help improve our absolute chronology for the inner Solar System by providing the timing for the beginning and end of lunar basaltic volcanism. Inner Planets: Mercury, Venus, and the Moon. Arizona State University Download File

More Details
Jack D. Farmer

Co-Authors: Mark Allen, Tori Hoehler, Michael Mischna
Astrobiology Research and Technology Priorities for Mars This white paper provides a broad overview of the major science and technology drivers for the next decade of Mars exploration. Mars: Not Phobos and Deimos. Arizona State University Download File

More Details
Sarah E. Braden

Co-Authors: Samuel J. Lawrence, Mark S. Robinson, Bradley L. Jolliff, Julie D. Stopar, Lillian R. Ostrach, Lisa R. Gaddis, Justin J. Hagerty, Steven B. Simon, B. Ray Hawke
Unexplored Areas of the Moon: Nonmare Domes Analysis of samples returned from unexplored areas of lunar volcanism such as the Gruithuisen Domes will (1) increase our knowledge of the history of the Earth-Moon system, (2) advance theories of lunar magmatic evolution and (3) provide valuable points of comparison with other terrestrial planets. Inner Planets: Mercury, Venus, and the Moon. Arizona State University Download File

More Details
Ariel D. Anbar

Co-Authors: David Grinspoon, Sean C. Solomon, G. Jeffrey Taylor
Astrobiology Research Priorities for Mercury, Venus, and the Moon This paper describes the value of exploration of Mercury, Venus and the Moon for the field of astrobiology and specifies high priority goals. Inner Planets: Mercury, Venus, and the Moon. Arizona State University Download File

More Details
Michael Nolan

Co-Authors: Paul Abell, Erik Asphaug, MiMi Aung, Julie Bellerose, Mehdi Benna, Lance Benner, David Blewett, William Bottke, Daniel Britt, Donald Campbell, Humberto Campins, Clark Chapman, Andrew Cheng, Harold C. Connolly Jr., Don Davis, Richard Dissley, Gerhard Drolshagen, Dan Durda, Eugene Fahnestock, Yanga Fernandez, Michael J. Gaffey, Mark Hammergren, James Head, Carl Hergenrother, Ellen Howell, Robert Jedicke, Steve Kortenkamp, Ekkehard Kuehrt, Stephen Larson, Dante Lauretta, Larry Lebofsky, Carey Lisse, Amy Lovell, Joseph Masiero, Lucy McFadden, William Merline, Patrick Michel, Beatrice Mueller, Joseph Nuth, David O''Brien, William Owen, Joseph Riedel, Harold Reitsema, Nalin Samarasinha, Daniel Scheeres, Derek Sears, Michael Shepard, Mark Sykes, Josep M. Trigo-Rodriguez, David Trilling, Ronald Vervack, James Walker, Benjamin Weiss, Hajime Yano, Donald Yeomans, Eliot Young, Michael Zolensky
Small Bodies Community White Paper: Near-Earth Asteroids This paper identifies the top-level science issues, mission priorities, research and technology needs, and programmatic balance for the exploration of Near-Earth Objects. This paper was organized by the Small Bodies Assessment Group. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. Arecibo Observatory Download File

More Details
Andrew Daga

Co-Authors: Carlton Allen, James Burke, Ian Crawford, Richard Leveille, Steven Simon, Lin Tze Tan
Lunar and Martian Lava Tube Exploration as Part of an Overall Scientific Survey This paper discusses the opportunity to search for and exploit lava tubes on the surfaces of the Moon and Mars as a means of enabling ambitious planetary science missions. [FINAL VERSION] Inner Planets: Mercury, Venus, and the Moon. Mars: Not Phobos and Deimos. Andrew Daga & Associates LLC Download File

More Details
James T. Struck Nobel Prize in Physics and Chemistry Could Be Awarded to Almost Anyone Who Has Done Any work In fields Including me Almost anyone with work in chemistry and physics could be awarded the Nobel Prize; me too. Many contributions in chemistry and physics go on for several pages. The work of many are not recognized when the award is given to 1 or 2 people. Award could be given to any finding, article or discovery. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. None of the above. A French American Museum of Chicago, Dinosaurs, Trees, Religion and Galaxies, Inc. Download File

More Details
James T. Struck Some Anthropology of Humans in Space. Can Human Stability Provide Some Support for Non-Evolutionary or Religious Concepts? Are we able to Speak of a Homo-Astronomicus or a Human Group Involved in Space Travel? What Happens to Humans in Space? (ID-0135) Some anthropology of humans and space. I propose a relationship between religious artifacts and astronomical stability. I establish why calling humans in space a new species fits current species understandings and mention 2 other groups-slavery and sending objects a distance. Space effects raised. Primitive Bodies: Asteroids, comets, Phobos, Deimos, Pluto/Charon and other Kuiper belt objects, meteorites, and interplanetary dust. None of the above. A French American Museum of Chicago, Dinosaurs, Trees, Religion and Galaxies, Inc. Download File

More Details
Anthony Wesley

Co-Authors: Glenn Orton, Padma Yanamandra-Fisher, Leigh Fletcher, Kevin Baines, Christopher Go, Makenzie Lystrup, Olivier Mousis, Imke de Pater, Jean-Pierre Lebreton, Kunio Sayanagi, Timothy Livengood, Tom Stallard, Henrik Mellin, Nigel Bannister
Ground-Based Support for Solar-System Exploration: Continuous Coverage Visible Light Imaging of Solar System Objects from a Network of Ground-Based Observatories We propose that the needs of planetary science for event-detection and time-critical observations could be well-served by a global network of low-cost remote-controlled (or autonomous) telescopes optimized for high-resolution visible light imaging of solar system targets. Inner Planets: Mercury, Venus, and the Moon. Giant Planets: Jupiter, Saturn, Uranus, Neptune, and exoplanets, including rings and magnetic fields, but not their satellites. Acquerra Pty Ltd. Download File

More Details


PREV | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | NEXT       View All Results       Print Results       Download as Excel

These documents have been prepared in coordination with the National Academies of Science in support of the National Academies Planetary Science Decadal Survey. These documents are being made available for information purposes only, and any views and opinions expressed herein do not necessarily state or reflect those of NASA, JPL, or the California Institute of Technology.

Awards and Recognition   Solar System Exploration Roadmap   Contact Us   Site Map   Print This Page
NASA Official: Kristen Erickson
Advisory: Dr. James Green, Director of Planetary Science
Outreach Manager: Alice Wessen
Curator/Editor: Phil Davis
Science Writer: Autumn Burdick
Producer: Greg Baerg
Webmaster: David Martin
> NASA Science Mission Directorate
> Budgets, Strategic Plans and Accountability Reports
> Equal Employment Opportunity Data
   Posted Pursuant to the No Fear Act
> Information-Dissemination Policies and Inventories
> Freedom of Information Act
> Privacy Policy & Important Notices
> Inspector General Hotline
> Office of the Inspector General
> NASA Communications Policy
> USA.gov
> ExpectMore.gov
> NASA Advisory Council
> Open Government at NASA
Last Updated: 9 Apr 2012